R-web 資料分析應用:圖表繪製(二)

江 奕 副統計分析師

生統 eNews 出刊囉!上期向大家介紹了一些基本的圖表繪製功能,其 中,包括次數分配表、列聯表、莖葉圖、2D 散佈圖及 3D 散佈圖等功能, 本期,將緊接著上一期的生統 eNews 繼續利用【雲端資料分析暨導引系統】 (R-web, <u>http://www.r-web.com.tw</u>)介紹其他的「圖表繪製」方法!

本期將依序介紹 R-web 圖表繪製模組內的二維曲線圖、三維曲線圖、 直方圖、長條圖、圓餅圖及盒鬚圖,本系列圖形將統一使用源自基隆社區 為基礎的整合篩檢計畫(Keelung Community-based Integrated Screen Program, KCIS)的心血管疾病資料作為範例資料檔,此資料的變數定義可 參考下表。詳細資料介紹請參閱首期生統 eNews。

變數	定義
性別(Gender)	女性(0)、男性(1)
年龄(Age)	
腰圍(Waist)	公分(cm)
心臟收縮壓(SysBP)	毫米汞柱(mmHg)
心臟舒張壓(DiaBP)	毫米汞柱(mmHg)
空腹葡萄糖(AC)	毫克/分升(mg/dl)
高密度脂蛋白(HDL)	毫克/分升(mg/dl)
三酸甘油酯(TG)	毫克/分升(mg/dl)
嚼檳榔習慣(Betelnut)	無(0)、有(1)
飲酒習慣(Alc_Drink)	無(0)、有(1)
個人心血管疾病史(CVD)	無(0)、有(1)
家族心血管疾病史(FamilyHx)	無(0)、有(1)
抽菸習慣(Tobacco)	無(0)、有(1)
菸草消費量(Tobacco_Consumption)	無(0)、每日一包(1)、每日兩包 (2)、每日三包以上(3)

▶ 二維曲線圖

二維曲線圖類似於 2D 散佈圖,亦可將兩變數分別置於座標圖上的 X 軸與 Y 軸,初步觀察兩變數間之相關性。不同在於,二維曲線圖提供二維 函數曲線的描繪,若有樣本資料點,可同時選擇附加資料點以觀察樣本資 料點和函數曲線的關係。依序點選主選單中【圖表繪製】→【曲線(面)圖】 →【二維曲線圖】進行繪製。

● 使用資料檔

	使用者個人資料檔 ▼ CVD CVD_100	<u>檢視資料型態(開新視窗)</u>
◉ 選擇要進行分析的資料	科檔或上傳檔案 您所選擇的資料檔為:	CVD_100
◎ 不使用資料檔		
步驟二:參數設定		
建立函數(說明)	<pre>請由下方按鈕建立函數: y = f(x) = 運算子: x 商數 餘數 奪次, () 數學函數: log log2 log10 exp sqrt abs sign 三角函數: sin cos tan arcsin arccos arctan 截斷類型函數: round trunc ceiling floor</pre>	游標控制: << >> Back Del 小算盤: 7 8 9 / 4 5 6 * 1 2 3 - 0 00 . + 済除目前的函数
函數儲存	已儲存的函數: f(x) = 0.5054 * x + 43.039	清除選擇的函數
☞ 附加資料點	ID CVD Age Gender SysBP AC HDL ↓ × 軸變數 (<->) Waist Y軸變數 <->> DiaBP	

上圖使用分析方法中的迴歸分析,自變數為「腰圍(Waist)」,依變數為 「心臟舒張壓(DiaBP)」,初步估計出兩變數的線性關係為 y=0.447x+43.039。 步驟二:參數設定中,將估計出的模型輸入並點選「儲存目前的函數」建 立函數,將X軸變數選入「Waist」,Y軸變數選入「DiaBP」。進階選項中, 可設定X軸範圍、函數曲線分類等,確認無誤儲存後,點選「繪製圖形」 開始進行分析。(此處使用分層抽樣取出的 100 筆樣本作為範例資料)

進階選項設	定:
X軸範圍	依附加資料點▼(若未附加資料點,則系統自動採用自訂範圍)
自訂X軸範圍	下界:60 、 上界:120
函數曲線分類	依線段顏色 ▼
主標題	
	儲存設定 關閉視窗

輸出結果,繪製出兩變數的散佈圖,與配適的迴歸函數。如下圖所示。

不使用資料檔

如下圖所示,若想了解三角函數圖形,則可依序輸入 f(x)=sin(x), f(x)=cos(x) 與 f(x)=tan(x),分別點選「儲存目前的函數」即可將多函數同 時儲存。進階選項設定中,我 們自訂X軸範圍設定,下界: 6.28、上界:-6.28, 確認後, 即

可儲存並開始分析。

進階選項設	定:
X軸範圍	依附加資料點 ▼ (若未附加資料點,則系統自動採用自訂範圍)
自訂X軸範圍	下界:6.28 、上界:-6.28
函數曲線分類	依線段顏色 ▼
主標題	
	儲存設定 關閉視窗

步驟一:資料匯入		
◎ 選擇要進行分析的資料	使用者個人資料檔 ▼ CVD CVD_100 CVD_BP 您所選擇的資料檔為:	檢視資料型態(開新視窗)
◉ 不使用資料檔		
步驟二:參數設定		
建立函數(說明)	請由下方按鈕建立函數: y = f(x) = 運算子: x 商數 餘數 幂次 ()) 數學函數: log log2 log10 exp sqrt abs sign 三角函數: sin cos tan arcsin arccos arctan 截斷損型函數: round trunc celling floor	游標控制: << >> Back Del 小算盤: 7 8 9 / 4 5 6 * 1 2 3 - 0 00 . +
函數儲存	儲存目前的函數 已儲存的函數: f(x) = sin(x) f(x) = cos(x) f(x) = tan(x)	清除目前的函數 清除選擇的函數

輸出之三角函數, sin(x), cos(x)與 tan(x) 圖形如下圖所示, 系統會依 照使用者輸入之不同函數分別依顏色做區別。

▶ 三維曲面圖

三維曲面圖,使用者可依不同需求,於 3D 空間中繪製出不同的曲面 圖。亦可同時將資料點附於圖上,同時觀察三種變數與圖形之間其相關性。 由於資料檔使用方法與二維曲面圖類似,在此僅簡單介紹三維曲面圖的繪 製方法。在 R-web 內依序點選主選單中【圖表繪製】→【曲線(面)圖】→ 【三圍曲面圖】進行繪製。

步驟一:資料匯入		
	== 請選擇一個資料夾 == ▼	
	== 請選擇一個資料夾 ==	
◎ 選擇要進行分析的資料檔或上傳檔案		
	▼ 您所選擇的資料檔為: == 尚未選擇資料檔 ==	
◉ 不使田資料燈		

步驟二:參數設定			
	請由下方按鈕建立函數: z = f(x, y) =		
	運算子:	游標控制:	
	x y 商數 餘數 冪次 , ()	<< >> Back Del	
2またふま(110月)		小算盤:	
建业函数(武明)	log log2 log10 exp sqrt abs sign	7 8 9 /	
	三角函數:	4 5 6 *	
	sin cos tan arcsin arccos arctan	1 2 3 -	
	截斷類型函數:	0 00 . +	
	round trunc ceiling floor		

操作畫面如上圖所示,利用按鈕點選建立「z=f(x,y)=x*exp(-x² - y²)」此函數,若有不了解按鈕的定義,可點選圖中之「說明」查看。 進階選項中,除了可設定X軸與Y軸的範圍外,同時可設定個人喜好之顏 色、圖點大小與主標題命名等設定。

自訂X軸範圍 下	▽界: -2 丶 上界: 2
自訂Y軸範圍 下	「界:-2 、上界:2
曲面顏色 📕	
圖點顏色	FF0000 🥬
圖點大小	小 ~
主標題	

繪製出的圖形,如下圖。繪製後的圖形為互動式,使用者可利用滑鼠 滾輪調整圖形大小,或按壓住滑鼠左鍵轉換各種不同的角度以觀察函數或 資料的特徵。

▶ 長條圖

長條圖,顧名思義是由長條方形的長度來詮釋每一個不同類別次數的 大小,僅能用於離散型的變數資料,其各相鄰長條間彼此不可相連接。常 用來觀測兩個或以上變數之間的關係。在 R-web 內依序點選主選單中【圖 表繪製】→【長條圖】進行繪製。

步驟一:資料匯入	
● 選擇要進行分析的資料檔或上傳檔案	使用者個人資料檔
	您所選擇的資料檔為: CVD
◎ 直接輣人已經分組之次數	欲孺契長條圖個數[請選擇•]個、母個長條圖答[不分組•]組
步驟二:參數設定	
資料格式為	未經彙整之原始資料▼
選擇欲繪製長條圖的變數	Tobacco •
選擇分組變數	Alc_Drink •
繪製圖	形」「進階選項」「重新設定」

操作畫面如上圖所示,步驟一:資料匯入,可直接選取使用者之資料 進行分析,亦可「使用直接輸入已經分組之次數」進行繪製。步驟二:參 數設定中,可選擇資料的格式為「未經彙整之原始資料」或者為「已經彙 整之分組次數」,此分析我們選取「抽菸習慣(Tobacco)」作為欲繪製長條圖

的變數,分組變數則選取「有、 無飲酒習慣(Alc_Drink)」,進 階選項設定中,可選擇各分組 圖形呈現方式「並排」或「堆 疊」,主標題、橫軸、縱軸標題 等皆可修改,確認儲存後,即 可點選「繪製圖形」開始繪製。

進階選項設定:	
各分組圖形呈現方式	並排 ▼
主標題	
橫軸標題	
縱軸標題	
縱軸範圍	最小值: 最大值:
	儲存設定 關閉視窗

輸出圖形如上圖所示,由變數的定義知道 Tobacco - 0 表示沒抽菸習 慣、1 表示有抽菸習慣, Alc_Drink - 0 表示沒有飲酒習慣、1 表示有飲酒 習慣。由上圖可以簡單的看出此筆資料,沒有飲酒習慣且同時沒有抽菸習 慣的人之機率較沒有飲酒習慣且卻有抽菸習慣的人高。

▶ 直方圖

直方圖,非常類似長條圖,同樣是以長條方形的長度來詮釋每一個不 同組別次數的大小,其與長條圖最大的不同點在於,其各相鄰長條間彼此 互相連接。為研究者常使用的一種繪圖方法,其可初步了解資料分佈情形。 於 R-web 內依序點選主選單中【圖表繪製】→【直方圖】進行繪製。

步驟一:資料匯入	
	使用者個人資料檔 ▼ 檢視資料型態(開新視窗)
選擇要進行分析的資料檔或上傳檔案	CVD_100 CVD_BP
	您所選擇的資料檔為: CVD

步驟二:參數設定	
選擇變數	SysBP T
是否在圖形中加上密度估計曲線	◉是 ◎否
是否在圖形中標示實際資料位置	◎是 ◎否

操作方法如上圖,步驟二:參數設定中,選擇欲繪製之變數,亦可同 時選擇是否需在圖形中「加上密度估計曲線」或「標示實際資料位置」。

假使研究人員想看看此筆資料中,「心臟收縮壓」的分佈情形,我們直 接將變數 SysBP 選取放入就好囉!輸出結果如下圖所示,大部分的篩檢者 「心臟收縮壓」集中於 110~130 之間,亦可看出此為一右偏分配,簡單來 說,右偏分配的特性就是,平均數>中位數>眾數。

▶ 圓餅圖

圆餅圖是以圓當中的扇形面積比例大小來詮釋每一個不同類別次數 的大小,而這些扇形區域合在一起會剛好是一個圓形,並且每個類別其扇 形所張開的角度,應為360度乘以該類別的相對次數。此圖形在商業領域 和大眾媒體中,可以說無處不在啊!R-web中可依序點選主選單中【圖表繪 製】→【圓餅圖】進行繪製。

	使用者個人資料檔 ▼
◉ 選擇要進行刀桁的貞科福以上潯偏余	wb_br 您所選擇的資料檔為: CVD_BP
◎ 直接輸入已經分組之次數	欲繪製組數□請選擇▼〕組
步驟二:參數設定	
資料格式為 選擇欲繪製圖餅屬的變數	未經彙整之原始資料 ▼ 血壓分期 ▼

操作畫面如上圖,步驟一:資料匯入中,我們運用的資料有先經過「資 料分組」,欲操作的使用者可於 R-web 主選單中【資料處理】→【資料分 組】進行分組。利用變數「心臟收縮壓(SysBP)」新增加一變數「高血壓分 期」,將資料分為四類,正常(90-119)、臨界高血壓(120-139)、高血壓一 期(140-159)、高血壓二期(≥160)。此變數之分類方法是參考維基百科所建 立的(http://en.wikipedia.org/wiki/Hypertension)。

將資料儲存為個人資料檔「CVD_BP」後,步驟二:參數設定中,於「選 擇欲繪製圓餅圖的變數」中選入剛剛所新增的變數「血壓分期」,而進階選 項中一樣可設定主標題名稱,確認無誤後,點選「繪製圖形」進行分析吧!

輸出結果畫面如上圖,可看出此次的整合篩檢計畫中,47.2%的人「心臟收縮壓」檢測為正常值,臨界高血壓的比例佔 32.73%,高血壓第一期的比例佔 14.48%,高血壓第二期的比例佔 5.57%。有興趣的讀者可以試試使用變數「心臟舒張壓(DiaBP)」來進行分組畫畫看喔!

▶ 盒鬚圖

盒鬚圖的功能非常的多,可以用來看出分配的位置、分配的範圍、分配的分散程度和分配的偏態等等,其中也包含了最小值、第一四分位數、中位數、第三四分位數、最大值與 IQR 等訊息,還可以協助用來判斷離群值的資訊喔!R-web 中可依序點選主選單中【圖表繪製】→【盒鬚圖】進行繪製。

使用者個人資料檔 ▼ 檢視資料型態(開新視窗)
CVD
CVD_100 CVD_BP
你所避擇的資料權為, CVD BP
ID Age
ID CVD Gender
ID CVD Gender Waist SvsBP
ID CVD Gender Waist SysBP

上圖為我們的操作畫面,我們一樣使用剛剛所建立的資料「CVD_BP」 來做為本次的分析。步驟二:參數設定中,選擇欲繪製盒鬚圖之變數後, 可同時選擇「分類變數」,選擇完畢後,點選「繪製圖形」開始繪製。

上圖為我們的輸出結果畫面,此筆資料可以明顯得看出篩檢計畫中的 人群,無論是第一四分位數、中位數或是第三四分位數,「心臟舒張壓」都 隨著年齡的增長而越來越高。

本期生統 eNews 就介紹到此囉!我們後半段的圖形繪製方法帶讀者 多認識了 R-web 中的二維曲線圖、三維曲線圖、直方圖、長條圖、圓餅圖 及盒鬚圖,以上 R-web 的基本圖形繪製方法也介紹到一個小段落。下一期 的生統 eNews 將開始介紹「分析方法」在 R-web 中的應用,敬請期待!